Developments in Statistical Modelling

· · ·
· Springer Nature
電子書
270
評分和評論未經驗證  瞭解詳情

關於本電子書

This volume on the latest developments in statistical modelling is a collection of refereed papers presented at the 38th International Workshop on Statistical Modelling, IWSM 2024, held from 14 to 19 July 2024 in Durham, UK. The contributions cover a wide range of topics in statistical modelling, including generalized linear models, mixture models, regularization techniques, hidden Markov models, smoothing methods, censoring and imputation techniques, Gaussian processes, spatial statistics, shape modelling, goodness-of-fit problems, and network analysis. Various highly topical applications are presented as well, especially from biostatistics. The approaches are equally frequentist and Bayesian, a categorization the statistical modelling community has synergetically overcome. The book also features the workshop’s keynote contribution on statistical modelling for big and little data, highlighting that both small and large data sets come with their own challenges.

The International Workshop on Statistical Modelling (IWSM) is the annual workshop of the Statistical Modelling Society, with the purpose of promoting important developments, extensions, and applications in statistical modelling, and bringing together statisticians working on related problems from various disciplines. This volume reflects this spirit and contributes to initiating and sustaining discussions about problems in statistical modelling and triggers new developments and ideas in the field.

關於作者

Jochen Einbeck is Professor of Statistics at Durham University, UK, Co-Director of the Durham Research Methods Centre, and Chair of IWSM 2024. He has been a regular attendee of the IWSM conferences since co-hosting the workshop in 2006 in Galway. He is Associate Editor of Statistical Modelling and Advances in Statistical Analysis, having previously served as Associate Editor of CSDA and Statistics. His research interests include mixture models, nonparametric regression, principal curves and random effect modelling.

Hyeyoung Maeng is an Assistant Professor of Statistics at Durham University, UK. Her research interests include change-point and feature detection, high-dimensional statistics, data-adaptive and multiscale methods and factor analysis. She is also interested in applying statistical methods in economics, finance and environment.

Emmanuel Ogundimu is an Associate Professor of Statistics at Durham University, UK and Co-Director of the Durham Biostatistics Unit. He leads a team of researchers on statistical aspects of clinical trials. His scholarly work centers on applying and developing statistical methodology and learning algorithms.

Konstantinos Perrakis is an Assistant Professor of Statistics at Durham University, UK. His research focuses on aspects of Bayesian and computational statistics and on statistical models for high-dimensional problems. He has applied his research to the fields of biomedicine, epidemiology and transportation.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。