Deterministic Global Optimization: Geometric Branch-and-bound Methods and their Applications

Ā· Nonconvex Optimization and Its Applications 63 å·» Ā· Springer Science & Business Media
é›»å­ę›øē±
142
ćƒšćƒ¼ć‚ø
č©•ä¾”ćØćƒ¬ćƒ“ćƒ„ćƒ¼ćÆē¢ŗčŖęøˆćæć§ćÆć‚ć‚Šć¾ć›ć‚“ 詳瓰

ć“ć®é›»å­ę›øē±ć«ć¤ć„ć¦

This monograph deals with a general class of solution approaches in deterministic global optimization, namely the geometric branch-and-bound methods which are popular algorithms, for instance, in Lipschitzian optimization, d.c. programming, and interval analysis.It also introduces a new concept for the rate of convergence and analyzes several bounding operations reported in the literature, from the theoretical as well as from the empirical point of view. Furthermore, extensions of the prototype algorithm for multicriteria global optimization problems as well as mixed combinatorial optimization problems are considered. Numerical examples based on facility location problems support the theory. Applications of geometric branch-and-bound methods, namely the circle detection problem in image processing, the integrated scheduling and location makespan problem, and the median line location problem in the three-dimensional space are also presented.

The book is intended for both researchers and students in the areas of mathematics, operations research, engineering, and computer science.

ć“ć®é›»å­ę›øē±ć‚’č©•ä¾”ć™ć‚‹

ć”ę„Ÿęƒ³ć‚’ćŠčžć‹ć›ćć ć•ć„ć€‚

čŖ­ę›øęƒ…å ±

ć‚¹ćƒžćƒ¼ćƒˆćƒ•ć‚©ćƒ³ćØć‚æćƒ–ćƒ¬ćƒƒćƒˆ
Android 悄 iPad / iPhone 用の Google Play ćƒ–ćƒƒć‚Æć‚¹ ć‚¢ćƒ—ćƒŖć‚’ć‚¤ćƒ³ć‚¹ćƒˆćƒ¼ćƒ«ć—ć¦ćć ć•ć„ć€‚ć“ć®ć‚¢ćƒ—ćƒŖćŒć‚¢ć‚«ć‚¦ćƒ³ćƒˆćØč‡Ŗå‹•ēš„ć«åŒęœŸć™ć‚‹ćŸć‚ć€ć©ć“ć§ć‚‚ć‚Ŗćƒ³ćƒ©ć‚¤ćƒ³ć‚„ć‚Ŗćƒ•ćƒ©ć‚¤ćƒ³ć§čŖ­ć‚€ć“ćØćŒć§ćć¾ć™ć€‚
ćƒŽćƒ¼ćƒˆćƒ‘ć‚½ć‚³ćƒ³ćØćƒ‡ć‚¹ć‚Æćƒˆćƒƒćƒ— ćƒ‘ć‚½ć‚³ćƒ³
Google Play ć§č³¼å…„ć—ćŸć‚Ŗćƒ¼ćƒ‡ć‚£ćƒ–ćƒƒć‚ÆćÆć€ćƒ‘ć‚½ć‚³ćƒ³ć®ć‚¦ć‚§ćƒ–ćƒ–ćƒ©ć‚¦ć‚¶ć§å†ē”Ÿć§ćć¾ć™ć€‚
é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ćŖć©ć®ćƒ‡ćƒć‚¤ć‚¹
Kobo é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ćŖć©ć® E Ink ćƒ‡ćƒć‚¤ć‚¹ć§čŖ­ć‚€ć«ćÆć€ćƒ•ć‚”ć‚¤ćƒ«ć‚’ćƒ€ć‚¦ćƒ³ćƒ­ćƒ¼ćƒ‰ć—ć¦ćƒ‡ćƒć‚¤ć‚¹ć«č»¢é€ć™ć‚‹åæ…č¦ćŒć‚ć‚Šć¾ć™ć€‚ć‚µćƒćƒ¼ćƒˆć•ć‚Œć¦ć„ć‚‹é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ć«ćƒ•ć‚”ć‚¤ćƒ«ć‚’č»¢é€ć™ć‚‹ę–¹ę³•ć«ć¤ć„ć¦č©³ć—ććÆć€ćƒ˜ćƒ«ćƒ—ć‚»ćƒ³ć‚æćƒ¼ć‚’ć”č¦§ćć ć•ć„ć€‚