Determinantal Ideals of Square Linear Matrices

· Springer Nature
eBook
318
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book explores determinantal ideals of square matrices from the perspective of commutative algebra, with a particular emphasis on linear matrices. Its content has been extensively tested in several lectures given on various occasions, typically to audiences composed of commutative algebraists, algebraic geometers, and singularity theorists.
Traditionally, texts on this topic showcase determinantal rings as the main actors, emphasizing their properties as algebras. This book follows a different path, exploring the role of the ideal theory of minors in various situations—highlighting the use of Fitting ideals, for example. Topics include an introduction to the subject, explaining matrices and their ideals of minors, as well as classical and recent bounds for codimension. This is followed by examples of algebraic varieties defined by such ideals. The book also explores properties of matrices that impact their ideals of minors, such as the 1-generic property, explicitly presenting a criterion by Eisenbud. Additionally, the authors address the problem of the degeneration of generic matrices and their ideals of minors, along with applications to the dual varieties of some of the ideals.
Primarily intended for graduate students and scholars in the areas of commutative algebra, algebraic geometry, and singularity theory, the book can also be used in advanced seminars and as a source of aid. It is suitable for beginner graduate students who have completed a first course in commutative algebra.

저자 정보

Zaqueu Ramos is a Professor at the Federal University of Sergipe, Brazil. He holds a bachelor's degree in Mathematics from the Federal University of Sergipe, Brazil and a PhD degree in Mathematics from the Federal University of Pernambuco (2012). He completed his postdoctorate studies at the Federal University of Paraíba (2014-2015) under the supervision of Aron Simis. His research focuses on commutative algebra and its interactions with algebraic geometry.

​Aron Simis is an Emeritus Full Professor at the Federal University of Pernambuco, Brazil. He earned his PhD from Queen's University, Canada, under the supervision of Paulo Ribenboim. He previously held a full professorship at IMPA, Rio de Janeiro, Brazil. He was President of the Brazilian Mathematical Society (1985-1987) and a member, on several occasions, of international commissions of the IMU (International Mathematical Union) and TWAS (Academy of Sciences for the Developing World). His main research interests include main structures in commutative algebra; projective varieties in algebraic geometry; aspects of algebraic combinatorics; special graded algebras; foundations of Rees algebras; cremona and birational maps; algebraic vector fields; and differential methods.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.