Derived Functors And Sheaf Cohomology

·
· Contemporary Mathematics And Its Applications: Monographs, Expositions And Lecture Notes Część 2 · World Scientific
E-book
216
Strony
Odpowiednia
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

The aim of the book is to present a precise and comprehensive introduction to the basic theory of derived functors, with an emphasis on sheaf cohomology and spectral sequences. It keeps the treatment as simple as possible, aiming at the same time to provide a number of examples, mainly from sheaf theory, and also from algebra.The first part of the book provides the foundational material: Chapter 1 deals with category theory and homological algebra. Chapter 2 is devoted to the development of the theory of derived functors, based on the notion of injective object. In particular, the universal properties of derived functors are stressed, with a view to make the proofs in the following chapters as simple and natural as possible. Chapter 3 provides a rather thorough introduction to sheaves, in a general topological setting. Chapter 4 introduces sheaf cohomology as a derived functor, and, after also defining Čech cohomology, develops a careful comparison between the two cohomologies which is a detailed analysis not easily available in the literature. This comparison is made using general, universal properties of derived functors. This chapter also establishes the relations with the de Rham and Dolbeault cohomologies. Chapter 5 offers a friendly approach to the rather intricate theory of spectral sequences by means of the theory of derived triangles, which is precise and relatively easy to grasp. It also includes several examples of specific spectral sequences. Readers will find exercises throughout the text, with additional exercises included at the end of each chapter.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.