Derived Functors And Sheaf Cohomology

·
· Contemporary Mathematics And Its Applications: Monographs, Expositions And Lecture Notes 2권 · World Scientific
eBook
216
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The aim of the book is to present a precise and comprehensive introduction to the basic theory of derived functors, with an emphasis on sheaf cohomology and spectral sequences. It keeps the treatment as simple as possible, aiming at the same time to provide a number of examples, mainly from sheaf theory, and also from algebra.The first part of the book provides the foundational material: Chapter 1 deals with category theory and homological algebra. Chapter 2 is devoted to the development of the theory of derived functors, based on the notion of injective object. In particular, the universal properties of derived functors are stressed, with a view to make the proofs in the following chapters as simple and natural as possible. Chapter 3 provides a rather thorough introduction to sheaves, in a general topological setting. Chapter 4 introduces sheaf cohomology as a derived functor, and, after also defining Čech cohomology, develops a careful comparison between the two cohomologies which is a detailed analysis not easily available in the literature. This comparison is made using general, universal properties of derived functors. This chapter also establishes the relations with the de Rham and Dolbeault cohomologies. Chapter 5 offers a friendly approach to the rather intricate theory of spectral sequences by means of the theory of derived triangles, which is precise and relatively easy to grasp. It also includes several examples of specific spectral sequences. Readers will find exercises throughout the text, with additional exercises included at the end of each chapter.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.