Deformations of Algebraic Schemes

· Grundlehren der mathematischen Wissenschaften 第 334 本图书 · Springer Science & Business Media
电子书
342
评分和评价未经验证  了解详情

关于此电子书

In one sense, deformation theory is as old as algebraic geometry itself: this is because all algebro-geometric objects can be “deformed” by suitably varying the coef?cients of their de?ning equations, and this has of course always been known by the classical geometers. Nevertheless, a correct understanding of what “deforming” means leads into the technically most dif?cult parts of our discipline. It is fair to say that such technical obstacles have had a vast impact on the crisis of the classical language and on the development of the modern one, based on the theory of schemes and on cohomological methods. The modern point of view originates from the seminal work of Kodaira and Spencer on small deformations of complex analytic manifolds and from its for- lization and translation into the language of schemes given by Grothendieck. I will not recount the history of the subject here since good surveys already exist (e. g. [27], [138], [145], [168]). Today, while this area is rapidly developing, a self-contained text covering the basic results of what we can call “classical deformation theory” seems to be missing. Moreover, a number of technicalities and “well-known” facts are scattered in a vast literature as folklore, sometimes with proofs available only in the complex analytic category. This book is an attempt to ?ll such a gap, at least p- tially.

作者简介

Edoardo Sernesi - vita

Present position:
Professore ordinario di Geometria, Facoltà di Scienze MFN, Università Roma Tre

Education:
- Laurea in Matematica- Università di Roma, 1969
- Ph.D. in Mathematics - Brandeis University, 1976

Professional experience:
- Assistente ordinario di Geometria, Università di Ferrara, 1974-1980.
- Professore straordinario di Geometria Università di Roma ``La Sapienza", 1980-1983.
- Professore ordinario di Geometria Università di Roma ``La Sapienza", 1983-1992.
- Professore ordinario di Geometria Università Roma Tre, from 1992.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。