Deep Learning in Biometrics

· ·
· CRC Press
2.0
리뷰 1개
eBook
328
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Deep Learning is now synonymous with applied machine learning. Many technology giants (e.g. Google, Microsoft, Apple, IBM) as well as start-ups are focusing on deep learning-based techniques for data analytics and artificial intelligence. This technology applies quite strongly to biometrics. This book covers topics in deep learning, namely convolutional neural networks, deep belief network and stacked autoencoders. The focus is also on the application of these techniques to various biometric modalities: face, iris, palmprint, and fingerprints, while examining the future trends in deep learning and biometric research.

  • Contains chapters written by authors who are leading researchers in biometrics.
  • Presents a comprehensive overview on the internal mechanisms of deep learning.
  • Discusses the latest developments in biometric research.
  • Examines future trends in deep learning and biometric research.
  • Provides extensive references at the end of each chapter to enhance further study.

평점 및 리뷰

2.0
리뷰 1개

저자 정보

Mayank Vatsa is an Associate Professor at IIIT New Delhi. He has authored more than 150 publications dealing with biometrics, image processing, machine learning and information fusion. He is a Senior Member of IEEE.

Richa Singh is an Associate Professor at IIIT New Delhi. She has authored over 100 publications on biometrics, patter recognition and machine learning in referred journals, book chapters and conferences.

Angshul Majumdar is an Assistant Professor at IIIT New Delhi. He is an active research in biomimetics and machine learning.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.