Data Complexity in Pattern Recognition

·
· Springer Science & Business Media
4,0
1 ulasan
eBook
300
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Machines capable of automatic pattern recognition have many fascinating uses in science & engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability.

This book takes a close view of data complexity & its role in shaping the theories & techniques in different disciplines & asks:

  • What is missing from current classification techniques?
  • When the automatic classifiers are not perfect, is it a deficiency of the algorithms by design, or is it a difficulty intrinsic to the classification task?
  • How do we know whether we have exploited to the fullest extent the knowledge embedded in the training data?

Uunique in its comprehensive coverage & multidisciplinary approach from various methodological & practical perspectives, researchers & practitioners will find this book an insightful reference to learn about current available techniques as well as application areas.

Rating dan ulasan

4,0
1 ulasan

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.