Curvature in Mathematics and Physics

· Courier Corporation
ই-বুক
416
পৃষ্ঠা
রেটিং ও রিভিউ যাচাই করা হয়নি  আরও জানুন

এই ই-বুকের বিষয়ে

This original text for courses in differential geometry is geared toward advanced undergraduate and graduate majors in math and physics. Based on an advanced class taught by a world-renowned mathematician for more than fifty years, the treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool.
Starting with an introduction to the various curvatures associated to a hypersurface embedded in Euclidean space, the text advances to a brief review of the differential and integral calculus on manifolds. A discussion of the fundamental notions of linear connections and their curvatures follows, along with considerations of Levi-Civita's theorem, bi-invariant metrics on a Lie group, Cartan calculations, Gauss's lemma, and variational formulas. Additional topics include the Hopf-Rinow, Myer's, and Frobenius theorems; special and general relativity; connections on principal and associated bundles; the star operator; superconnections; semi-Riemannian submersions; and Petrov types. Prerequisites include linear algebra and advanced calculus, preferably in the language of differential forms.

লেখক সম্পর্কে

Shlomo Zvi Sternberg is a leading mathematician noted for his work in geometry. A longtime mathematics professor at Harvard University, he has written several textbooks for undergraduate students as well as a number of monographs used at Harvard and other educational institutions.

ই-বুকে রেটিং দিন

আপনার মতামত জানান।

পঠন তথ্য

স্মার্টফোন এবং ট্যাবলেট
Android এবং iPad/iPhone এর জন্য Google Play বই অ্যাপ ইনস্টল করুন। এটি আপনার অ্যাকাউন্টের সাথে অটোমেটিক সিঙ্ক হয় ও আপনি অনলাইন বা অফলাইন যাই থাকুন না কেন আপনাকে পড়তে দেয়।
ল্যাপটপ ও কম্পিউটার
Google Play থেকে কেনা অডিওবুক আপনি কম্পিউটারের ওয়েব ব্রাউজারে শুনতে পারেন।
eReader এবং অন্যান্য ডিভাইস
Kobo eReaders-এর মতো e-ink ডিভাইসে পড়তে, আপনাকে একটি ফাইল ডাউনলোড ও আপনার ডিভাইসে ট্রান্সফার করতে হবে। ব্যবহারকারীর উদ্দেশ্যে তৈরি সহায়তা কেন্দ্রতে দেওয়া নির্দেশাবলী অনুসরণ করে যেসব eReader-এ ফাইল পড়া যাবে সেখানে ট্রান্সফার করুন।