The authors provide clear descriptions of the relevant statistical theory and illustrate practical considerations for modeling longitudinal data. Topics covered include choice of endpoint and statistical test; modeling means and the correlations between repeated measurements; accounting for covariates; modeling categorical data; model verification; methods for incomplete (missing) data that includes the latest developments in sensitivity analyses, along with approaches for and issues in choosing estimands; and means for preventing missing data. Each chapter stands alone in its coverage of a topic. The concluding chapters provide detailed advice on how to integrate these independent topics into an over-arching study development process and statistical analysis plan.
Craig Mallinckrodt and Ilya Lipkovich each have extensive experience in medical research and longitudinal analyses. Dr. Mallinckrodt is a Research Fellow at Eli Lilly and Company and a Fellow of the American Statistical Association. He has won numerous awards, including the 2014 award for statistical excellence in the Pharmaceutical Industry from the Royal Statistical Society and PSI (Statisticians in the Pharmaceutical Industry). Dr. Lipkovich is a Principal Scientific Advisor at Quintiles. He is a widely-published author and frequent presenter at conferences and has developed a number of successful short courses and tutorials.