Counting with Symmetric Functions

Β·
· Developments in Mathematics Книга 43 · BirkhÀuser
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°
292
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
ΠžΡ†Π΅Π½ΠΊΠΈΡ‚Π΅ ΠΈ ΠΎΡ‚Π·ΠΈΠ²ΠΈΡ‚Π΅ Π½Π΅ са ΠΏΠΎΡ‚Π²ΡŠΡ€Π΄Π΅Π½ΠΈ  НаучСтС ΠΏΠΎΠ²Π΅Ρ‡Π΅

Всичко Π·Π° Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas.

The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuthalgorithm and a method for proving PΓ³lya’s enumeration theorem using symmetric functions. Chapters 7 and 8 are more specialized than the preceding ones, covering consecutive pattern matches in permutations, words, cycles, and alternating permutations and introducing the reciprocity method as a way to define ring homomorphisms with desirable properties.

Counting with Symmetric Functions will appeal to graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetric functions. The unique approach taken and results and exercises explored by the authors make it an important contribution to the mathematical literature.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ Ρ‚Π°Π·ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Π° ΠΊΠ½ΠΈΠ³Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΠΊΠ°ΠΊΠ²ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ Π·Π° Ρ‡Π΅Ρ‚Π΅Π½Π΅Ρ‚ΠΎ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅Ρ‚ΠΎ Google Play Книги Π·Π° Android ΠΈ iPad/iPhone. Π’ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ сС синхронизира с ΠΏΡ€ΠΎΡ„ΠΈΠ»Π° Π²ΠΈ ΠΈ Π²ΠΈ позволява Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½, ΠΊΡŠΠ΄Π΅Ρ‚ΠΎ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡŽΡ‚Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π·Π°ΠΊΡƒΠΏΠ΅Π½ΠΈΡ‚Π΅ ΠΎΡ‚ Google Play Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ посрСдством ΡƒΠ΅Π± Π±Ρ€Π°ΡƒΠ·ΡŠΡ€Π° Π½Π° ΠΊΠΎΠΌΠΏΡŽΡ‚ΡŠΡ€Π° си.
Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ устройства
Π—Π° Π΄Π° Ρ‡Π΅Ρ‚Π΅Ρ‚Π΅ Π½Π° устройства с Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ мастило, ΠΊΠ°Ρ‚ΠΎ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ‚Π΅ Ρ‡Π΅Ρ‚Ρ†ΠΈ ΠΎΡ‚ Kobo, трябва Π΄Π° ΠΈΠ·Ρ‚Π΅Π³Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ» ΠΈ Π΄Π° Π³ΠΎ ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Π½Π° устройството си. Π˜Π·ΠΏΡŠΠ»Π½Π΅Ρ‚Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΈΡ‚Π΅ инструкции Π² ΠŸΠΎΠΌΠΎΡ‰Π½ΠΈΡ Ρ†Π΅Π½Ρ‚ΡŠΡ€, Π·Π° Π΄Π° ΠΏΡ€Π΅Ρ…Π²ΡŠΡ€Π»ΠΈΡ‚Π΅ Ρ„Π°ΠΉΠ»ΠΎΠ²Π΅Ρ‚Π΅ Π² ΠΏΠΎΠ΄Π΄ΡŠΡ€ΠΆΠ°Π½ΠΈΡ‚Π΅ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈ Ρ‡Π΅Ρ‚Ρ†ΠΈ.