Convex Cones: Geometry and Probability

· Springer Nature
E-knjiga
347
Strani
Ocene in mnenja niso preverjeni. Več o tem

O tej e-knjigi

This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn–Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula.

In recent years questions related to convex cones have arisen in applied mathematics, involving, for example, properties of random cones and their non-trivial intersections. The prerequisites for this work, such as integral geometric formulas and results on conic intrinsic volumes, were previously scattered throughout the literature, but no coherent presentation was available. The present book closes this gap. It includes several pearls from the theory of convex cones, which should be better known.


O avtorju

Rolf Schneider is Professor Emeritus at the University of Freiburg. He obtained his PhD in 1967 (Frankfurt) and his Habilitation in 1969 (Bochum), after which he was Assistant Professor at the University of Frankfurt (1970) and then Full Professor at Technische Universität Berlin (1970) and the University of Freiburg (1974). He became Professor Emeritus in 2005. He is an Honorary Doctor of the University of Salzburg and a Fellow of the American Mathematical Society. With research interests primarily in convex geometry and stochastic geometry, he has over 200 publications, including the books Convex Bodies: The Brunn–Minkowski Theory and (with Wolfgang Weil) Stochastic and Integral Geometry.



Ocenite to e-knjigo

Povejte nam svoje mnenje.

Informacije o branju

Pametni telefoni in tablični računalniki
Namestite aplikacijo Knjige Google Play za Android in iPad/iPhone. Samodejno se sinhronizira z računom in kjer koli omogoča branje s povezavo ali brez nje.
Prenosni in namizni računalniki
Poslušate lahko zvočne knjige, ki ste jih kupili v Googlu Play v brskalniku računalnika.
Bralniki e-knjig in druge naprave
Če želite brati v napravah, ki imajo zaslone z e-črnilom, kot so e-bralniki Kobo, morate prenesti datoteko in jo kopirati v napravo. Podrobna navodila za prenos datotek v podprte bralnike e-knjig najdete v centru za pomoč.