Convex Cones: Geometry and Probability

· Springer Nature
eBook
347
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn–Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula.

In recent years questions related to convex cones have arisen in applied mathematics, involving, for example, properties of random cones and their non-trivial intersections. The prerequisites for this work, such as integral geometric formulas and results on conic intrinsic volumes, were previously scattered throughout the literature, but no coherent presentation was available. The present book closes this gap. It includes several pearls from the theory of convex cones, which should be better known.


Acerca del autor

Rolf Schneider is Professor Emeritus at the University of Freiburg. He obtained his PhD in 1967 (Frankfurt) and his Habilitation in 1969 (Bochum), after which he was Assistant Professor at the University of Frankfurt (1970) and then Full Professor at Technische Universität Berlin (1970) and the University of Freiburg (1974). He became Professor Emeritus in 2005. He is an Honorary Doctor of the University of Salzburg and a Fellow of the American Mathematical Society. With research interests primarily in convex geometry and stochastic geometry, he has over 200 publications, including the books Convex Bodies: The Brunn–Minkowski Theory and (with Wolfgang Weil) Stochastic and Integral Geometry.



Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.