Convex Analysis and Optimization

· ·
· Athena Scientific
電子書
560
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization.

The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997).

Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including:

1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems.

2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization.

3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions.

Among its features the book:

a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar

b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality

c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality

d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming

e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html




關於作者

Dimitri P. Bertsekas is Fulton Professor of Computational Decision Making, at Arizona State University, and McAfee Professor of Engineering at the Massachusetts Institute of Technology. He is a winner of many awards and a member of the prestigious United States National Academy of Engineering

Angelia Nedic is a Professor and Electrical and Computer Engineering at Arizona State University

Asuman Ozdaglar is a professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。