Conjugate Duality in Convex Optimization

¡ Lecture Notes in Economics and Mathematical Systems āĻ•āĻŋāϤāĻžāĻĒ 637 ¡ Springer Science & Business Media
āχāĻŦ⧁āĻ•
164
āĻĒ⧃āĻˇā§āĻ āĻž
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•

āĻāχ āχāĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

The results presented in this book originate from the last decade research work of the author in the ?eld of duality theory in convex optimization. The reputation of duality in the optimization theory comes mainly from the major role that it plays in formulating necessary and suf?cient optimality conditions and, consequently, in generatingdifferent algorithmic approachesfor solving mathematical programming problems. The investigations made in this work prove the importance of the duality theory beyond these aspects and emphasize its strong connections with different topics in convex analysis, nonlinear analysis, functional analysis and in the theory of monotone operators. The ?rst part of the book brings to the attention of the reader the perturbation approach as a fundamental tool for developing the so-called conjugate duality t- ory. The classical Lagrange and Fenchel duality approaches are particular instances of this general concept. More than that, the generalized interior point regularity conditions stated in the past for the two mentioned situations turn out to be p- ticularizations of the ones given in this general setting. In our investigations, the perturbationapproachrepresentsthestartingpointforderivingnewdualityconcepts for several classes of convex optimization problems. Moreover, via this approach, generalized Moreau–Rockafellar formulae are provided and, in connection with them, a new class of regularity conditions, called closedness-type conditions, for both stable strong duality and strong duality is introduced. By stable strong duality we understand the situation in which strong duality still holds whenever perturbing the objective function of the primal problem with a linear continuous functional.

āĻāχ āχāĻŦ⧁āĻ•āĻ–āύāĻ• āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āφāĻĒ⧁āύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•āϏāĻŽā§‚āĻš āĻļ⧁āύāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āχ-ā§°ā§€āĻĄāĻžā§° āφ⧰⧁ āĻ…āĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϚ
Kobo eReadersā§° āĻĻ⧰⧇ āχ-āϚāĻŋ⧟āĻžāρāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāχāϚāϏāĻŽā§‚āĻšāϤ āĻĒā§āĻŋāĻŦāϞ⧈, āφāĻĒ⧁āύāĻŋ āĻāϟāĻž āĻĢāĻžāχāϞ āĻĄāĻžāωāύāĻ˛â€™āĻĄ āϕ⧰āĻŋ āϏ⧇āχāĻŸā§‹ āφāĻĒā§‹āύāĻžā§° āĻĄāĻŋāĻ­āĻžāχāϚāϞ⧈ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤ⧰āĻŖ āϕ⧰āĻŋāĻŦ āϞāĻžāĻ—āĻŋāĻŦāĨ¤ āϏāĻŽā§°ā§āĻĨāĻŋāϤ āχ-ā§°āĻŋāĻĄāĻžā§°āϞ⧈ āĻĢāĻžāχāϞāĻŸā§‹ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤ⧰ āϕ⧰āĻŋāĻŦ āϜāĻžāύāĻŋāĻŦāϞ⧈ āϏāĻšāĻžāϝāĻŧ āϕ⧇āĻ¨ā§āĻĻā§ā§°āϤ āĻĨāĻ•āĻž āϏāĻŦāĻŋāĻļ⧇āώ āύāĻŋā§°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀ āϚāĻžāĻ“āĻ•āĨ¤

āĻ›āĻŋā§°āĻŋāϜāĻŸā§‹ āĻ…āĻŦā§āϝāĻžāĻšāϤ ā§°āĻžāĻ–āĻ•

Radu Ioan Botā§° āĻĻā§āĻŦāĻžā§°āĻž āφ⧰⧁ āĻ…āϧāĻŋāĻ•

āĻāϕ⧇āϧ⧰āĻŖā§° āχ-āĻŦ⧁āĻ•