Conformal Mapping on Riemann Surfaces

· Courier Corporation
E-kirja
352
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

The subject matter loosely called "Riemann surface theory" has been the starting point for the development of topology, functional analysis, modern algebra, and any one of a dozen recent branches of mathematics; it is one of the most valuable bodies of knowledge within mathematics for a student to learn.
Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five parts. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in Part II and is examined in terms of intuitive physical and topological technique in Part III. In Part IV the author shows how to define real functions on manifolds analogously with the algebraic and analytic points of view outlined here. The exposition returns in Part V to the use of a single complex variable z. As the text is richly endowed with problem material — 344 exercises — the book is perfect for self-study as well as classroom use.
Harvey Cohn is well-known in the mathematics profession for his pedagogically superior texts, and the present book will be of great interest not only to pure and applied mathematicians, but also engineers and physicists. Dr. Cohn is currently Distinguished Professor of Mathematics at the City University of New York Graduate Center.

Tietoja kirjoittajasta

A Distinguished Professor of Mathematics at the City University of New York Graduate Center, Harvey Cohn is well known for his pedagogically superior texts.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.