Computing Highly Oscillatory Integrals

· ·
· Other Titles in Applied Mathematics Buku 186 · SIAM
4,0
2 ulasan
eBook
190
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Highly oscillatory phenomena range across numerous areas in science and engineering and their computation represents a difficult challenge. A case in point is integrals of rapidly oscillating functions in one or more variables. The quadrature of such integrals has been historically considered very demanding. Research in the past 15 years (in which the authors played a major role) resulted in a range of very effective and affordable algorithms for highly oscillatory quadrature. This is the only monograph bringing together the new body of ideas in this area in its entirety.

The starting point is that approximations need to be analyzed using asymptotic methods rather than by more standard polynomial expansions. As often happens in computational mathematics, once a phenomenon is understood from a mathematical standpoint, effective algorithms follow. As reviewed in this monograph, we now have at our disposal a number of very effective quadrature methods for highly oscillatory integrals?Filon-type and Levin-type methods, methods based on steepest descent, and complex-valued Gaussian quadrature. Their understanding calls for a fairly varied mathematical toolbox?from classical numerical analysis, approximation theory, and theory of orthogonal polynomials all the way to asymptotic analysis?yet this understanding is the cornerstone of efficient algorithms.

The text is intended for advanced undergraduate and graduate students, as well as applied mathematicians, scientists, and engineers who encounter highly oscillatory integrals as a critical difficulty in their computations.

Rating dan ulasan

4,0
2 ulasan

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.