Computational Methods in Optimal Control Problems

· Lecture Notes in Economics and Mathematical Systems کتاب 27 · Springer Science & Business Media
ای بک
49
صفحات
درجہ بندیوں اور جائزوں کی تصدیق نہیں کی جاتی ہے  مزید جانیں

اس ای بک کے بارے میں

The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY •••••••• 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method •. •••••••••. . . . ••••••. ••••••••. • 8 3. 2 Boundary Constraints •••••••••••. ••••. • 9 3. 3 Problems with Control Constraints ••. •• 15 4. 0 SUCCESSIVE SWEEP METHOD •••••••••••••••••••• 18 4. 1 Final Time Given Implicitly ••••. •••••• 22 5. 0 SECOND-VARIATION METHOD •••••••••••••••••••• 23 6. 0 SHOOTING METHODS ••••••••••••••••••••••••••• 27 6. 1 Newton-RaphsonMethod ••••••••••••••••• 27 6.

اس ای بک کی درجہ بندی کریں

ہمیں اپنی رائے سے نوازیں۔

پڑھنے کی معلومات

اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔