Computational Kinematics

· ·
· Solid Mechanics and Its Applications Libro 28 · Springer Science & Business Media
eBook
310
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

The aim of this book is to provide an account of the state of the art in Com putational Kinematics. We understand here under this term ,that branch of kinematics research involving intensive computations not only of the numer ical type, but also of a symbolic nature. Research in kinematics over the last decade has been remarkably ori ented towards the computational aspects of kinematics problems. In fact, this work has been prompted by the need to answer fundamental question s such as the number of solutions, whether real or complex, that a given problem can admit. Problems of this kind occur frequently in the analysis and synthesis of kinematic chains, when finite displacements are considered. The associated models, that are derived from kinematic relations known as closure equations, lead to systems of nonlinear algebraic equations in the variables or parameters sought. What we mean by algebraic equations here is equations whereby the unknowns are numbers, as opposed to differen tial equations, where the unknowns are functions. The algebraic equations at hand can take on the form of multivariate polynomials or may involve trigonometric functions of unknown angles. Because of the nonlinear nature of the underlying kinematic models, purely numerical methods turn out to be too restrictive, for they involve iterative procedures whose convergence cannot, in general, be guaranteed. Additionally, when these methods converge, they do so to only isolated solu tions, and the question as to the number of solutions to expect still remains.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.