Computable Functions

·
· Student Mathematical Library Buch 19 · American Mathematical Soc.
E-Book
166
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

In 1936, before the development of modern computers, Alan Turing proposed the concept of a machine that would embody the interaction of mind, machine, and logical instruction. The idea of a ``universal machine'' inspired the notion of programs stored in a computer's memory. Nowadays, the study of computable functions is a core topic taught to mathematics and computer science undergraduates. Based on the lectures for undergraduates at Moscow State University, this book presents a lively and concise introduction to the central facts and basic notions of the general theory of computation. It begins with the definition of a computable function and an algorithm, and discusses decidability, enumerability, universal functions, numberings and their properties, $m$-completeness, the fixed point theorem, arithmetical hierarchy, oracle computations, and degrees of unsolvability. The authors complement the main text with over 150 problems. They also cover specific computational models, such as Turing machines and recursive functions. The intended audience includes undergraduate students majoring in mathematics or computer science, and all mathematicians and computer scientists that would like to learn basics of the general theory of computation. The book is also an ideal reference source for designing a course.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.