Complex Multiplication

· Grundlehren der mathematischen Wissenschaften Livre 255 · Springer Science & Business Media
Ebook
184
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, §6 and Chapter 4, §1, as well as the rest of Chapter 4. The applications of Chapter6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.