Complex Analysis

· Cambridge University Press
Е-књига
290
Страница
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

This user-friendly textbook introduces complex analysis at the beginning graduate or advanced undergraduate level. Unlike other textbooks, it follows Weierstrass' approach, stressing the importance of power series expansions instead of starting with the Cauchy integral formula, an approach that illuminates many important concepts. This view allows readers to quickly obtain and understand many fundamental results of complex analysis, such as the maximum principle, Liouville's theorem, and Schwarz's lemma. The book covers all the essential material on complex analysis, and includes several elegant proofs that were recently discovered. It includes the zipper algorithm for computing conformal maps, as well as a constructive proof of the Riemann mapping theorem, and culminates in a complete proof of the uniformization theorem. Aimed at students with some undergraduate background in real analysis, though not Lebesgue integration, this classroom-tested textbook will teach the skills and intuition necessary to understand this important area of mathematics.

О аутору

Donald E. Marshall is Professor of Mathematics at the University of Washington. He received his Ph.D. from University of California, Los Angeles in 1976. Professor Marshall is a leading complex analyst with a very strong research record that has been continuously funded throughout his career. He has given invited lectures in over a dozen countries. He is coauthor of the research-level monograph Harmonic Measure (Cambridge, 2005).

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.