Commutative Group Schemes

· Springer
E-knjiga
136
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

We restrict ourselves to two aspects of the field of group schemes, in which the results are fairly complete: commutative algebraic group schemes over an algebraically closed field (of characteristic different from zero), and a duality theory concern ing abelian schemes over a locally noetherian prescheme. The prelim inaries for these considerations are brought together in chapter I. SERRE described properties of the category of commutative quasi-algebraic groups by introducing pro-algebraic groups. In char8teristic zero the situation is clear. In characteristic different from zero information on finite group schemee is needed in order to handle group schemes; this information can be found in work of GABRIEL. In the second chapter these ideas of SERRE and GABRIEL are put together. Also extension groups of elementary group schemes are determined. A suggestion in a paper by MANIN gave crystallization to a fee11ng of symmetry concerning subgroups of abelian varieties. In the third chapter we prove that the dual of an abelian scheme and the linear dual of a finite subgroup scheme are related in a very natural way. Afterwards we became aware that a special case of this theorem was already known by CARTIER and BARSOTTI. Applications of this duality theorem are: the classical duality theorem ("duality hy pothesis", proved by CARTIER and by NISHI); calculation of Ext(~a,A), where A is an abelian variety (result conjectured by SERRE); a proof of the symmetry condition (due to MANIN) concerning the isogeny type of a formal group attached to an abelian variety.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.