Commutative Algebra: Volume II

· Graduate Texts in Mathematics Bok 29 · Springer Science & Business Media
E-bok
416
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

This second volume of our treatise on commutative algebra deals largely with three basic topics, which go beyond the more or less classical material of volume I and are on the whole of a more advanced nature and a more recent vintage. These topics are: (a) valuation theory; (b) theory of polynomial and power series rings (including generalizations to graded rings and modules); (c) local algebra. Because most of these topics have either their source or their best motivation in algebraic geom etry, the algebro-geometric connections and applications of the purely algebraic material are constantly stressed and abundantly scattered through out the exposition. Thus, this volume can be used in part as an introduc tion to some basic concepts and the arithmetic foundations of algebraic geometry. The reader who is not immediately concerned with geometric applications may omit the algebro-geometric material in a first reading (see" Instructions to the reader," page vii), but it is only fair to say that many a reader will find it more instructive to find out immediately what is the geometric motivation behind the purely algebraic material of this volume. The first 8 sections of Chapter VI (including § 5bis) deal directly with properties of places, rather than with those of the valuation associated with a place. These, therefore, are properties of valuations in which the value group of the valuation is not involved.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.