Coherent functors and asymptotic properties

· Linköping Studies in Science and Technology. Dissertations 1. knjiga · Linköping University Electronic Press
5,0
2 mnenji
E-knjiga
43
Strani
Ocene in mnenja niso preverjeni. Več o tem

O tej e-knjigi

In this thesis we study properties of the so called coherent functors. Coherent functors were first introduced by Auslander in 1966 in a general setting. Coherent functors have been used since then as powerful tools for different purposes: to describe infinitesimal deformation theory, to describe algebraicity of a stack or to study properties of Rees algebras.

In 1998, Hartshorne proved that half exact coherent functors over a discrete valuation ring ?? are direct sums of the identity functor, Hom-functors of quotient modules of ?? and tensor products of quotient modules of ??. In our first article (Paper A), we obtain a similar characterization for half exact coherent functors over a much wider class of rings: Dedekind domains. This fact allows us to classify half exact coherent functors over Dedekind domains.

In our second article (Paper B), coherent functors over noetherian rings are considered. We study asymptotic properties of sets of prime ideals connected with coherent functors applied to artinian modules or finitely generated modules. Also considering quotient modules M /anM, where an is the nthpower of an ideal ??, one obtains that the Betti and Bass numbers of the images under a coherent functor of the quotient modules above are polynomials in n for large n. Furthermore, the lengths of these image modules are polynomial in ??, for large ??, under the condition that the image modules have finite length.

Ocene in mnenja

5,0
2 mnenji

Ocenite to e-knjigo

Povejte nam svoje mnenje.

Informacije o branju

Pametni telefoni in tablični računalniki
Namestite aplikacijo Knjige Google Play za Android in iPad/iPhone. Samodejno se sinhronizira z računom in kjer koli omogoča branje s povezavo ali brez nje.
Prenosni in namizni računalniki
Poslušate lahko zvočne knjige, ki ste jih kupili v Googlu Play v brskalniku računalnika.
Bralniki e-knjig in druge naprave
Če želite brati v napravah, ki imajo zaslone z e-črnilom, kot so e-bralniki Kobo, morate prenesti datoteko in jo kopirati v napravo. Podrobna navodila za prenos datotek v podprte bralnike e-knjig najdete v centru za pomoč.