Coherent functors and asymptotic properties

· Linköping Studies in Science and Technology. Dissertations Книга 1 · Linköping University Electronic Press
5,0
Отзывы: 2
Электронная книга
43
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

In this thesis we study properties of the so called coherent functors. Coherent functors were first introduced by Auslander in 1966 in a general setting. Coherent functors have been used since then as powerful tools for different purposes: to describe infinitesimal deformation theory, to describe algebraicity of a stack or to study properties of Rees algebras.

In 1998, Hartshorne proved that half exact coherent functors over a discrete valuation ring ?? are direct sums of the identity functor, Hom-functors of quotient modules of ?? and tensor products of quotient modules of ??. In our first article (Paper A), we obtain a similar characterization for half exact coherent functors over a much wider class of rings: Dedekind domains. This fact allows us to classify half exact coherent functors over Dedekind domains.

In our second article (Paper B), coherent functors over noetherian rings are considered. We study asymptotic properties of sets of prime ideals connected with coherent functors applied to artinian modules or finitely generated modules. Also considering quotient modules M /anM, where an is the nthpower of an ideal ??, one obtains that the Betti and Bass numbers of the images under a coherent functor of the quotient modules above are polynomials in n for large n. Furthermore, the lengths of these image modules are polynomial in ??, for large ??, under the condition that the image modules have finite length.

Оценки и отзывы

5,0
2 отзыва

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.