Coherent functors and asymptotic properties

· Linköping Studies in Science and Technology. Dissertations Bok 1 · Linköping University Electronic Press
5,0
2 anmeldelser
E-bok
43
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

In this thesis we study properties of the so called coherent functors. Coherent functors were first introduced by Auslander in 1966 in a general setting. Coherent functors have been used since then as powerful tools for different purposes: to describe infinitesimal deformation theory, to describe algebraicity of a stack or to study properties of Rees algebras.

In 1998, Hartshorne proved that half exact coherent functors over a discrete valuation ring ?? are direct sums of the identity functor, Hom-functors of quotient modules of ?? and tensor products of quotient modules of ??. In our first article (Paper A), we obtain a similar characterization for half exact coherent functors over a much wider class of rings: Dedekind domains. This fact allows us to classify half exact coherent functors over Dedekind domains.

In our second article (Paper B), coherent functors over noetherian rings are considered. We study asymptotic properties of sets of prime ideals connected with coherent functors applied to artinian modules or finitely generated modules. Also considering quotient modules M /anM, where an is the nthpower of an ideal ??, one obtains that the Betti and Bass numbers of the images under a coherent functor of the quotient modules above are polynomials in n for large n. Furthermore, the lengths of these image modules are polynomial in ??, for large ??, under the condition that the image modules have finite length.

Vurderinger og anmeldelser

5,0
2 anmeldelser

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.