Coherent functors and asymptotic properties

· Linköping Studies in Science and Technology. Dissertations Libro 1 · Linköping University Electronic Press
5,0
2 recensións
Libro electrónico
43
Páxinas
As valoracións e as recensións non están verificadas  Máis información

Acerca deste libro electrónico

In this thesis we study properties of the so called coherent functors. Coherent functors were first introduced by Auslander in 1966 in a general setting. Coherent functors have been used since then as powerful tools for different purposes: to describe infinitesimal deformation theory, to describe algebraicity of a stack or to study properties of Rees algebras.

In 1998, Hartshorne proved that half exact coherent functors over a discrete valuation ring ?? are direct sums of the identity functor, Hom-functors of quotient modules of ?? and tensor products of quotient modules of ??. In our first article (Paper A), we obtain a similar characterization for half exact coherent functors over a much wider class of rings: Dedekind domains. This fact allows us to classify half exact coherent functors over Dedekind domains.

In our second article (Paper B), coherent functors over noetherian rings are considered. We study asymptotic properties of sets of prime ideals connected with coherent functors applied to artinian modules or finitely generated modules. Also considering quotient modules M /anM, where an is the nthpower of an ideal ??, one obtains that the Betti and Bass numbers of the images under a coherent functor of the quotient modules above are polynomials in n for large n. Furthermore, the lengths of these image modules are polynomial in ??, for large ??, under the condition that the image modules have finite length.

Valoracións e recensións

5,0
2 recensións

Valora este libro electrónico

Dános a túa opinión.

Información de lectura

Smartphones e tabletas
Instala a aplicación Google Play Libros para Android e iPad/iPhone. Sincronízase automaticamente coa túa conta e permíteche ler contido en liña ou sen conexión desde calquera lugar.
Portátiles e ordenadores de escritorio
Podes escoitar os audiolibros comprados en Google Play a través do navegador web do ordenador.
Lectores de libros electrónicos e outros dispositivos
Para ler contido en dispositivos de tinta electrónica, como os lectores de libros electrónicos Kobo, é necesario descargar un ficheiro e transferilo ao dispositivo. Sigue as instrucións detalladas do Centro de Axuda para transferir ficheiros a lectores electrónicos admitidos.