Quasi-Likelihood And Its Application: A General Approach to Optimal Parameter Estimation

· Springer Science & Business Media
Ebook
236
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book is concerned with the general theory of optimal estimation of - rameters in systems subject to random e?ects and with the application of this theory. The focus is on choice of families of estimating functions, rather than the estimators derived therefrom, and on optimization within these families. Only assumptions about means and covariances are required for an initial d- cussion. Nevertheless, the theory that is developed mimics that of maximum likelihood, at least to the ?rst order of asymptotics. The term quasi-likelihood has often had a narrow interpretation, asso- ated with its application to generalized linear model type contexts, while that of optimal estimating functions has embraced a broader concept. There is, however, no essential distinction between the underlying ideas and the term quasi-likelihood has herein been adopted as the general label. This emphasizes its role in extension of likelihood based theory. The idea throughout involves ?nding quasi-scores from families of estimating functions. Then, the qua- likelihood estimator is derived from the quasi-score by equating to zero and solving, just as the maximum likelihood estimator is derived from the like- hood score.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.