Model-Based Clustering and Classification for Data Science: With Applications in R

· · ·
· Cambridge Series in Statistical and Probabilistic Mathematics Book 50 · Cambridge University Press
Ebook
447
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.

About the author

Charles Bouveyron is Full Professor of Statistics at Université Côte d'Azur and the Chair of Excellence in Data Science at Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt. He has published extensively on model-based clustering, particularly for networks and high-dimensional data.

Gilles Celeux is Director of Research Emeritus at Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt. He is one of the founding researchers in model-based clustering, having published extensively in the area for thrity-five years.

T. Brendan Murphy is Full Professor in the School of Mathematics and Statistics at University College Dublin. His research interests include model-based clustering, classification, network modeling and latent variable modeling.

Adrian E. Raftery is the Boeing International Professor of Statistics and Sociology at the University of Washington. He is one of the founding researchers in model-based clustering, having published in the area since 1984.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.