Building Machine Learning Pipelines

· "O'Reilly Media, Inc."
3.0
1 条评价
电子书
366
符合条件
评分和评价未经验证  了解详情

关于此电子书

Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems.

Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects.

  • Understand the steps to build a machine learning pipeline
  • Build your pipeline using components from TensorFlow Extended
  • Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines
  • Work with data using TensorFlow Data Validation and TensorFlow Transform
  • Analyze a model in detail using TensorFlow Model Analysis
  • Examine fairness and bias in your model performance
  • Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices
  • Learn privacy-preserving machine learning techniques

评分和评价

3.0
1 条评价

作者简介

Hannes Hapke is a VP of Engineering at Caravel, a machine learning company providing novel personalization products for the retail industry. Prior to joining Caravel, Hannes was a Ssenior data science engineer at Cambia Health Solutions, a health solutions provider for 2.6 million people and a machine learning engineer at Talentpair, Inc., where he developed novel deep learning model for recruiting companies. Hannes cofounded a renewable energy startup which applied deep learning to detect homes would be optimal candidates for solar power.Additionally, Hannes has coauthored a publication about natural language processing and deep learning and presented at various conferences about deep learning and Python.

Catherine Nelson is a senior data scientist for Concur Labs at SAP Concur, where she explores innovative ways to use machine learning to improve the experience of a business traveller. She is particularly interested in privacy-preserving ML and applying deep learning to enterprise data. In her previous career as a geophysicist she studied ancient volcanoes and explored for oil in Greenland. Catherine has a PhD in geophysics from Durham University and a Masters of Earth Sciences from Oxford University.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。