Building Machine Learning Pipelines

· "O'Reilly Media, Inc."
3,0
1 κριτική
ebook
366
Σελίδες
Κατάλληλο
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems.

Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects.

  • Understand the steps to build a machine learning pipeline
  • Build your pipeline using components from TensorFlow Extended
  • Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines
  • Work with data using TensorFlow Data Validation and TensorFlow Transform
  • Analyze a model in detail using TensorFlow Model Analysis
  • Examine fairness and bias in your model performance
  • Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices
  • Learn privacy-preserving machine learning techniques

Βαθμολογίες και αξιολογήσεις

3,0
1 αξιολόγηση

Σχετικά με τον συγγραφέα

Hannes Hapke is a VP of Engineering at Caravel, a machine learning company providing novel personalization products for the retail industry. Prior to joining Caravel, Hannes was a Ssenior data science engineer at Cambia Health Solutions, a health solutions provider for 2.6 million people and a machine learning engineer at Talentpair, Inc., where he developed novel deep learning model for recruiting companies. Hannes cofounded a renewable energy startup which applied deep learning to detect homes would be optimal candidates for solar power.Additionally, Hannes has coauthored a publication about natural language processing and deep learning and presented at various conferences about deep learning and Python.

Catherine Nelson is a senior data scientist for Concur Labs at SAP Concur, where she explores innovative ways to use machine learning to improve the experience of a business traveller. She is particularly interested in privacy-preserving ML and applying deep learning to enterprise data. In her previous career as a geophysicist she studied ancient volcanoes and explored for oil in Greenland. Catherine has a PhD in geophysics from Durham University and a Masters of Earth Sciences from Oxford University.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.