Brownian Motion and Stochastic Calculus

· Graduate Texts in Mathematics Bok 113 · Springer Science & Business Media
E-bok
470
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Two of the most fundamental concepts in the theory of stochastic processes are the Markov property and the martingale property. * This book is written for readers who are acquainted with both of these ideas in the discrete-time setting, and who now wish to explore stochastic processes in their continuous time context. It has been our goal to write a systematic and thorough exposi tion of this subject, leading in many instances to the frontiers of knowledge. At the same time, we have endeavored to keep the mathematical prerequisites as low as possible, namely, knowledge of measure-theoretic probability and some familiarity with discrete-time processes. The vehicle we have chosen for this task is Brownian motion, which we present as the canonical example of both a Markov process and a martingale. We support this point of view by showing how, by means of stochastic integration and random time change, all continuous-path martingales and a multitude of continuous-path Markov processes can be represented in terms of Brownian motion. This approach forces us to leave aside those processes which do not have continuous paths. Thus, the Poisson process is not a primary object of study, although it is developed in Chapter 1 to be used as a tool when we later study passage times and local time of Brownian motion.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.