Braid Groups

· Graduate Texts in Mathematics Книга 247 · Springer Science & Business Media
4,0
Отзывы: 2
Электронная книга
338
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

Braids and braid groups, the focus of this text, have been at the heart of important mathematical developments over the last two decades. Their association with permutations has led to their presence in a number of mathematical fields and physics. As central objects in knot theory and 3-dimensional topology, braid groups has led to the creation of a new field called quantum topology.

In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices.

Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.

Оценки и отзывы

4,0
2 отзыва

Об авторе

Dr. Christian Kassel is the director of CNRS (Centre National de la Recherche Scientifique in France), was the director of l'Institut de Recherche Mathematique Avancee from 2000 to 2004, and is an editor for the Journal of Pure and Applied Algebra. Kassel has numerous publications, including the book Quantum Groups in the Springer Gradate Texts in Mathematics series.

Dr. Vladimir Turaev was also a professor at the CNRS and is currently at Indiana University in the Department of Mathematics.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.