Braid Groups

· Graduate Texts in Mathematics الكتاب 247 · Springer Science & Business Media
4.0
مراجعتان (2)
كتاب إلكتروني
338
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

Braids and braid groups, the focus of this text, have been at the heart of important mathematical developments over the last two decades. Their association with permutations has led to their presence in a number of mathematical fields and physics. As central objects in knot theory and 3-dimensional topology, braid groups has led to the creation of a new field called quantum topology.

In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices.

Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.

التقييمات والتعليقات

4.0
مراجعتان (2)

نبذة عن المؤلف

Dr. Christian Kassel is the director of CNRS (Centre National de la Recherche Scientifique in France), was the director of l'Institut de Recherche Mathematique Avancee from 2000 to 2004, and is an editor for the Journal of Pure and Applied Algebra. Kassel has numerous publications, including the book Quantum Groups in the Springer Gradate Texts in Mathematics series.

Dr. Vladimir Turaev was also a professor at the CNRS and is currently at Indiana University in the Department of Mathematics.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.