Biopharmaceutical Informatics: Learning to Discover Developable Biotherapeutics

┬╖
┬╖ CRC Press
рдИ-рдкреБрд╕реНрддрдХ
384
рдкреЗрдЬ
рдкрд╛рддреНрд░
рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкрд░реАрдХреНрд╖рдгреЗ рдпрд╛рдВрдЪреА рдкрдбрддрд╛рд│рдгреА рдХреЗрд▓реЗрд▓реА рдирд╛рд╣реА ┬ардЕрдзрд┐рдХ рдЬрд╛рдгреВрди рдШреНрдпрд╛

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд╛рд╡рд┐рд╖рдпреА

Despite the phenomenal clinical success of antibody-based biopharmaceuticals in recent years, discovery and development of these novel biomedicines remains a costly, time-consuming, and risky endeavor with low probability of success. To bring better biomedicines to patients faster, we have come up with a strategic vision of Biopharmaceutical Informatics which calls for syncretic use of computation and experiment at all stages of biologic drug discovery and pre-clinical development cycles to improve probability of successful clinical outcomes. Biopharmaceutical Informatics also encourages industry and academic scientists supporting various aspects of biotherapeutic drug discovery and development cycles to learn from our collective experiences of successes and, more importantly, failures. The insights gained from such learnings shall help us improve the rate of successful translation of drug discoveries into drug products available to clinicians and patients, reduce costs, and increase the speed of biologic drug discovery and development. Hopefully, the efficiencies gained from implementing such insights shall make novel biomedicines more affordable for patients.

This unique volume describes ways to invent and commercialize biomedicines more efficiently:

  • Calls for digital transformation of biopharmaceutical industry by appropriately collecting, curating, and making available discovery and pre-clinical development project data using FAIR principles
  • Describes applications of artificial intelligence and machine learning (AIML) in discovery of antibodies in silico (DAbI) starting with antigen design, constructing inherently developable antibody libraries, finding hits, identifying lead candidates, and optimizing them
  • Details applications of AIML, physics-based computational design methods, and other bioinformatics tools in fields such as developability assessments, formulation and excipient design, analytical and bioprocess development, and pharmacology
  • Presents pharmacokinetics/pharmacodynamics (PK/PD) and Quantitative Systems Pharmacology (QSP) models for biopharmaceuticals
  • Describes uses of AIML in bispecific and multi-specific formats

Dr Sandeep Kumar has also edited a collection of articles dedicated to this topic which can be found in the Taylor and Francis journal mAbs.

рд▓реЗрдЦрдХрд╛рд╡рд┐рд╖рдпреА

Dr. Sandeep Kumar is currently a Distinguished Fellow (Executive Director) at the department of Computational Science in Moderna Therapeutics, Cambridge, MA where he leads Molecular Design and Modeling team. Sandeep Kumar holds a Ph.D. in Computational Biophysics and has over 25 years of experience researching protein structure тАУ Function relationships. Sandeep Kumar has so far contributed towards more than 100 research articles, reviews, book chapters, and has previously edited a book entitled тАЬDevelopability of Biotherapeutics: Computational ApproachesтАЭ. Sandeep has been contributing towards discovery and development of numerous monoclonal antibodies, antibody drug conjugates, bispecific and multi-specific modalities, as well as vaccines. Based on the insights gained from these experiences, Sandeep has been advocating for Biopharmaceutical Informatics, a strategic vision dedicated to synergistic use of computation and experimentation towards a cost effective and more efficient discovery and development of Biotherapeutics. More recently, he is promoting the concept of DAbI (Discovery of Antibodies in silico) where he sees an opportunity for generative AI to not only accelerate biopharmaceutical drug design but also to expand the antigen space druggable by antibody-based biotherapeutics.

Dr. Andrew Nixon is currently Vice President, Biotherapeutics Molecule Discovery at Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA. Andy earned his Ph.D. in Physical Biochemistry from the University of London for studies completed at the MRCтАЩs National Institute for Medical Research. Andy has over 20 years of experience in biologic drug discovery and has contributed to over 100 antibody discovery programs resulting in numerous clinical candidates and approved biologics including TAKHZYRO, a fully human antibody inhibitor of plasma kallikrein.

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд▓рд╛ рд░реЗрдЯрд┐рдВрдЧ рджреНрдпрд╛

рддреБрдореНрд╣рд╛рд▓рд╛ рдХрд╛рдп рд╡рд╛рдЯрддреЗ рддреЗ рдЖрдореНрд╣рд╛рд▓рд╛ рд╕рд╛рдВрдЧрд╛.

рд╡рд╛рдЪрди рдорд╛рд╣рд┐рддреА

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рдЖрдгрд┐ рдЯреЕрдмрд▓реЗрдЯ
Android рдЖрдгрд┐ iPad/iPhone рд╕рд╛рдареА Google Play рдмреБрдХ рдЕтАНреЕрдк рдЗрдВрд╕реНтАНрдЯреЙрд▓ рдХрд░рд╛. рд╣реЗ рддреБрдордЪреНтАНрдпрд╛ рдЦрд╛рддреНтАНрдпрд╛рдиреЗ рдЖрдкреЛрдЖрдк рд╕рд┐рдВрдХ рд╣реЛрддреЗ рдЖрдгрд┐ рддреБрдореНтАНрд╣реА рдЬреЗрдереЗ рдХреБрдареЗ рдЕрд╕рд╛рд▓ рддреЗрдереВрди рддреБрдореНтАНрд╣рд╛рд▓рд╛ рдСрдирд▓рд╛рдЗрди рдХрд┐рдВрд╡рд╛ рдСрдлрд▓рд╛рдЗрди рд╡рд╛рдЪрдгреНтАНрдпрд╛рдЪреА рдЕрдиреБрдорддреА рджреЗрддреЗ.
рд▓реЕрдкрдЯреЙрдк рдЖрдгрд┐ рдХреЙрдВрдкреНрдпреБрдЯрд░
рддреБрдореНрд╣реА рддреБрдордЪреНрдпрд╛ рдХрд╛рдБрдкреНрдпреБрдЯрд░рдЪрд╛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЭрд░ рд╡рд╛рдкрд░реВрди Google Play рд╡рд░ рдЦрд░реЗрджреА рдХреЗрд▓реЗрд▓реА рдСрдбрд┐рдУрдмреБрдХ рдРрдХреВ рд╢рдХрддрд╛.
рдИрд╡рд╛рдЪрдХ рдЖрдгрд┐ рдЗрддрд░ рдбрд┐рд╡реНрд╣рд╛рдЗрд╕реЗрд╕
Kobo eReaders рд╕рд╛рд░рдЦреНрдпрд╛ рдИ-рдЗрдВрдХ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рд╡рд╛рдЪрдгреНтАНрдпрд╛рд╕рд╛рдареА, рддреБрдореНрд╣реА рдПрдЦрд╛рджреА рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░реВрди рддреА рддреБрдордЪреНтАНрдпрд╛ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреЗ рдЖрд╡рд╢реНрдпрдХ рдЖрд╣реЗ. рд╕рдкреЛрд░реНрдЯ рдЕрд╕рд▓реЗрд▓реНрдпрд╛ eReaders рд╡рд░ рдлрд╛рдЗрд▓ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреНрдпрд╛рд╕рд╛рдареА, рдорджрдд рдХреЗрдВрджреНрд░ рдордзреАрд▓ рддрдкрд╢реАрд▓рд╡рд╛рд░ рд╕реВрдЪрдирд╛ рдлреЙрд▓реЛ рдХрд░рд╛.