Biomechanics

· Robotics Science 第 77 本图书 · One Billion Knowledgeable
电子书
285
符合条件
评分和评价未经验证  了解详情

关于此电子书

In the evolving world of robotics, biomechanics stands as a crucial intersection of engineering, biology, and technology. Fouad Sabry’s "Biomechanics," part of the "Robotics Science" series, offers a comprehensive exploration of the biomechanical principles that drive robotic innovation. From the foundations of human motion to cuttingedge applications in biomedical engineering and tissue engineering, this book serves as an indispensable resource for professionals, students, and enthusiasts alike.

Chapters Brief Overview:


1: Biomechanics: Introduction to the study of movement, force, and mechanical behavior in biological systems.


2: Biomedical engineering: Exploration of engineering principles applied to biological systems and healthcare technologies.


3: Skeleton: A detailed study of the human skeletal system and its role in biomechanics and robotic design.


4: Propulsion: Investigating how organisms generate motion and its application in robotic propulsion systems.


5: Tissue (biology): Examines the mechanical properties of biological tissues and their role in biomechanical research.


6: Tissue engineering: Focuses on developing biological tissues for medical and robotic applications.


7: Ultrastructure: Analyzing the microscopic structure of cells and tissues to understand their mechanical functions.


8: Motility: Investigates cellular movement and its implications for robotic systems mimicking biological organisms.


9: Neural engineering: Explores the integration of neural systems with engineering to improve robotic control and function.


10: Applied mechanics: Discusses how mechanical principles are applied to solve realworld biomechanical challenges.


11: Biological system: A look into the complex interactions within biological systems and their mechanical properties.


12: Biological engineering: Studies the application of engineering principles to biological systems for innovation in medicine and robotics.


13: Biomaterial: Focuses on materials derived from biological sources used in biomechanics and robotics.


14: Iatrophysics: Investigates the physics of medical applications, connecting biological systems with engineered solutions.


15: Biomechanical engineering: Integrates biomechanics with engineering design to develop advanced robotics systems.


16: Nanobiomechanics: Analyzes the mechanics at the nano scale to understand biological and robotic systems at a molecular level.


17: Biofluid dynamics: Examines the behavior of biological fluids and their role in mechanical systems.


18: Cell biomechanics: Delves into the biomechanics of cells and their application in robotics and medical technology.


19: Neural Darwinism: Explores the theory of neural selection and its potential impact on robotics and artificial intelligence.


20: Physiology: Investigates the mechanical and functional aspects of biological systems from a physiological perspective.


21: Zoology: The study of animal systems and their biomechanical principles to inspire robotics design.


This book provides a deep dive into the essential elements of biomechanics that shape robotic science. Whether you are a professional, a student, or an enthusiast, "Biomechanics" will enrich your understanding of how the human body’s mechanical systems inform robotic technology. Each chapter not only covers a critical topic but also shows how it connects to the broader theme of advancing robotics in the medical, engineering, and technological fields. If you are passionate about the future of robotics, this book is an invaluable addition to your collection.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。