Biomaterials for Vasculogenesis and Angiogenesis

·
· Woodhead Publishing
eBook
520
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Biomaterials for Angiogenesis and Vasculogenesis covers the application of materials designed to encourage new blood vessel formation. Angiogenesis and vasculogenesis play an important role in tissue engineering and regenerative medicine research by promoting vascular networks inside engineered tissues and thereby increasing tissue healing and regeneration. However, researchers are faced with the challenge of finding suitable materials for improving angiogenesis and vascular formation in assays. This book reviews a broad range of biomaterials for the promotion of blood vessel genesis, from polymers and bioactive glass, to nanomaterial scaffolds and 3D angiogenic constructs. In addition, the book covers a variety of applications for biomaterials in tissue repair and regeneration, including cardiovascular regeneration, liver tissue engineering and much more. It will serve as a detailed reference for researchers in academia and industry, working in the fields of biomedical science and engineering, materials science, regenerative medicine and translational medicine. - Introduces readers to the molecular and cellular basis of angiogenesis and vasculogenesis - Helps researchers find suitable biomaterials to promote angiogenesis in engineered tissues and assays - Describes a range of biomaterials and their properties, including glass-ceramics, nano-carriers, polymers, and more

Acerca del autor

Saeid Kargozar is a Fellow of the University of Texas Southwestern Medical Center (UTSW), USA. He was previously a Senior Assistant Professor of Tissue Engineering in the Department of Anatomy and Cell Biology, at Mashhad University of Medical Sciences in Iran. He received his M.S. in Medical Biotechnology in 2012 and his Ph.D. in Tissue Engineering in 2016, both from Tehran University of Medical Sciences, Iran. His current research interests include biocompatible materials and tissue engineering with special focus on bioactive glasses and the decellularized extracellular matrix (ECM). He is an active member of the American Ceramic Society and has published more than 118 peer-reviewed publications. According to a recent scientometric study published in PLOS Biology in 2021, he is listed amongst the top 2% of cited scientists in the world.

Dr. Masoud Mozafari is a Fellow at Lunenfeld Tanenbaum Research Institute, Mount Sinai Health Hospital, University of Toronto. He was previously Assistant Professor and Director of the Bioengineering Lab, at the Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Cellular and Molecular Research Center, and Department of Tissue Engineering and Regenerative Medicine of the Iran University of Medical Sciences (IUMS), Tehran, Iran. Dr. Mozafari’s research interests range across biomaterials, nanotechnology, and tissue engineering, and he is known for the development of strategies for the treatment of damaged tissues and organs, and controlling biological substances for targeted delivery into the human body. Dr. Mozafari has received several awards, including the Khwarizmi Award and the Julia Polak European Doctorate Award for outstanding translational research contributions to the field of biomaterials. He has also received the WIPO Medal for Inventors from The World Intellectual Property Organization (WIPO), in recognition of his contributions to economic and technological development. Dr. Mozafari is currently working on the editorial board of several journals.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.