Biomaterials for Artificial Organs

·
· Elsevier
電子書
320
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored

關於作者

Dr. Michael Lysaght was the Founder and Director Emeritus of Brown University, USA’s Center for Biomedical Engineering, and a retired member of the Brown Faculty. He sadly passed away before he could see this finished book and remains a widely recognized and well-respected figure in the field of biomedical engineering for his contributions to organ replacement technology.

Professor Thomas J. Webster, a chemical and biomedical engineer, holds degrees from the University of Pittsburgh and RPI. He has founded over a dozen companies with FDA-approved medical products benefiting over 30,000 patients and is involved in sustainability and renewable energy technologies. Currently a professor at multiple universities, he has received numerous accolades, including recognition as a top scientist by PLOS and Clarivate. With over 1,350 publications and 66,000 citations, he is a former president of the U.S. Society for Biomaterials and was recently nominated for the Nobel Prize in Chemistry. He also established a fund for Nigerian student research in the USA.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。