Bilagebraic Structures and Smarandache Bialgebraic Structures

· Infinite Study
Электронная кніга
270
Старонкі
Падыходзячыя
Ацэнкі і водгукі не спраўджаны  Даведацца больш

Пра гэту электронную кнігу

Generally the study of algebraic structures deals with the concepts like groups, semigroups, groupoids, loops, rings, near-rings, semirings, and vector spaces. The study of bialgebraic structures deals with the study of bistructures like bigroups, biloops, bigroupoids, bisemigroups, birings, binear-rings, bisemirings and bivector spaces. A complete study of these bialgebraic structures and their Smarandache analogues is carried out in this book. For examples: A set (S, +, *) with two binary operations ?+? and '*' is called a bisemigroup of type II if there exists two proper subsets S1 and S2 of S such that S = S1 U S2 and(S1, +) is a semigroup.(S2, *) is a semigroup. Let (S, +, *) be a bisemigroup. We call (S, +, *) a Smarandache bisemigroup (S-bisemigroup) if S has a proper subset P such that (P, +, *) is a bigroup under the operations of S. Let (L, +, *) be a non empty set with two binary operations. L is said to be a biloop if L has two nonempty finite proper subsets L1 and L2 of L such that L = L1 U L2 and(L1, +) is a loop, (L2, *) is a loop or a group. Let (L, +, *) be a biloop we call L a Smarandache biloop (S-biloop) if L has a proper subset P which is a bigroup. Let (G, +, *) be a non-empty set. We call G a bigroupoid if G = G1 U G2 and satisfies the following:(G1 , +) is a groupoid (i.e. the operation + is non-associative), (G2, *) is a semigroup. Let (G, +, *) be a non-empty set with G = G1 U G2, we call G a Smarandache bigroupoid (S-bigroupoid) if G1 and G2 are distinct proper subsets of G such that G = G1 U G2 (neither G1 nor G2 are included in each other), (G1, +) is a S-groupoid.(G2, *) is a S-semigroup.A nonempty set (R, +, *) with two binary operations ?+? and '*' is said to be a biring if R = R1 U R2 where R1 and R2 are proper subsets of R and (R1, +, *) is a ring, (R2, +, ?) is a ring.A Smarandache biring (S-biring) (R, +, *) is a non-empty set with two binary operations ?+? and '*' such that R = R1 U R2 where R1 and R2 are proper subsets of R and(R1, +, *) is a S-ring, (R2, +, *) is a S-ring.

Ацаніце гэту электронную кнігу

Падзяліцеся сваімі меркаваннямі.

Чытанне інфармацыb

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
У вэб-браўзеры камп’ютара можна слухаць аўдыякнігі, купленыя ў Google Play.
Электронныя кнiгi i iншыя прылады
Каб чытаць на такіх прыладах для электронных кніг, як, напрыклад, Kobo, трэба спампаваць файл і перанесці яго на сваю прыладу. Выканайце падрабязныя інструкцыі, прыведзеныя ў Даведачным цэнтры, каб перанесці файлы на прылады, якія падтрымліваюцца.