Big Data Analytics

· ·
· Handbook of Statistics 第 33 冊 · Elsevier
電子書
390
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

While the term Big Data is open to varying interpretation, it is quite clear that the Volume, Velocity, and Variety (3Vs) of data have impacted every aspect of computational science and its applications. The volume of data is increasing at a phenomenal rate and a majority of it is unstructured. With big data, the volume is so large that processing it using traditional database and software techniques is difficult, if not impossible. The drivers are the ubiquitous sensors, devices, social networks and the all-pervasive web. Scientists are increasingly looking to derive insights from the massive quantity of data to create new knowledge. In common usage, Big Data has come to refer simply to the use of predictive analytics or other certain advanced methods to extract value from data, without any required magnitude thereon. Challenges include analysis, capture, curation, search, sharing, storage, transfer, visualization, and information privacy. While there are challenges, there are huge opportunities emerging in the fields of Machine Learning, Data Mining, Statistics, Human-Computer Interfaces and Distributed Systems to address ways to analyze and reason with this data. The edited volume focuses on the challenges and opportunities posed by "Big Data" in a variety of domains and how statistical techniques and innovative algorithms can help glean insights and accelerate discovery. Big data has the potential to help companies improve operations and make faster, more intelligent decisions. - Review of big data research challenges from diverse areas of scientific endeavor - Rich perspective on a range of data science issues from leading researchers - Insight into the mathematical and statistical theory underlying the computational methods used to address big data analytics problems in a variety of domains

關於作者

Dr. Venu Govindaraju, SUNY Distinguished Professor of Computer Science and Engineering, is the Vice President of Research and Economic Development of the University at Buffalo and founding director of the Center for Unified Biometrics and Sensors. He received his Bachelor’s degree with honors from the Indian Institute of Technology (IIT) in 1986, and his Ph.D. from UB in 1992. His research focus is on machine learning and pattern recognition in the domains of Document Image Analysis and Biometrics. Dr. Govindaraju has co-authored about 400 refereed scientific papers. His seminal work in handwriting recognition was at the core of the first handwritten address interpretation system used by the US Postal Service. He was also the prime technical lead responsible for technology transfer to the Postal Services in US, Australia, and UK. He has been a Principal or Co-Investigator of sponsored projects funded for about 65 million dollars. Dr. Govindaraju has supervised the dissertations of 30 doctoral students. He has served on the editorial boards of premier journals such as the IEEE Transactions on Pattern Analysis and Machine Intelligence and is currently the Editor-in-Chief of the IEEE Biometrics Council Compendium. Dr. Govindaraju is a Fellow of the ACM (Association of Computing Machinery), IEEE (Institute of Electrical and Electronics Engineers), AAAS (American Association for the Advancement of Science), the IAPR (International Association of Pattern Recognition), and the SPIE (International Society of Optics and Photonics). He is recipient of the 2004 MIT Global Indus Technovator award and the 2010 IEEE Technical Achievement award.

Dr. Vijay Raghavan is the Alfred and Helen Lamson/ BoRSF Endowed Professor in Computer Science at the Center for Advanced Computer Studies and the Director of the NSF-sponsored Industry/ University Cooperative Research Center for Visual and Decision Informatics. As the director, he co-ordinates several multi-institutional, industry-driven research projects and manages a budget of over $500K/year. From 1997 to 2003, he led a $2.3M research and development project in close collaboration with the USGS National Wetlands Research Center and with the Department of Energy's Office of Science and Technical Information on creating a digital library with data mining capabilities incorporated. His research interests are in data mining, information retrieval, machine learning and Internet computing. He has published over 250 peer-reviewed research papers- appearing in top-level journals and proceedings- that cumulatively accord him an h-index of 31, based on citations. He has served as major advisor for 24 doctoral students. Besides substantial technical expertise, Dr. Raghavan has vast experience managing interdisciplinary and multi- institutional collaborative projects. He has also directed industry-sponsored research, on projects pertaining to Neuro-imaging based dementia detection and literature-based biomedical hypotheses generation, respectively. He received the IEEE International Conference on Data Mining (ICDM) 2005 Outstanding Service Award. Dr. Raghavan serves as a member of the Executive Committee of the IEEE Technical Committee on Intelligent Informatics (IEEE-TCII), the Web Intelligence Consortium (WIC) Technical Committee and the Web Intelligence and Intelligent Agent Technology Conferences’ Steering Committee. He was one of the Conference Co-Chairs of IEEE 2013 Big Data Conference. For many years of service to the community, he received the WIC 2013 Outstanding Service Award. He was a member of the Steering Committee of IEEE BigData 2014 conference held on Oct. 27 – 30, 2014 at Washington, D.C. He is one of the Editors-in-Chief of the Web Intelligence journal, an Associate Editor of the ACM Transactions on Internet Technology and the International J. of Computer Science & Applications, and a member of the International Rough Set Society Advisory Board. He is an ACM Distinguished Scientist and served as an ACM Distinguished Lecturer from 1993 – 2006. In addition, he served as a member of the Advisory Committee of the NSF Computer and Information Science and Engineering directorate (CISE-AC) during 2008 – 2010.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。