Bifurcations in Hamiltonian Systems: Computing Singularities by Gröbner Bases

· · ·
· Springer
E-könyv
172
Oldalak száma
Az értékelések és vélemények nincsenek ellenőrizve További információ

Információk az e-könyvről

The authors consider applications of singularity theory and computer algebra to bifurcations of Hamiltonian dynamical systems. They restrict themselves to the case were the following simplification is possible. Near the equilibrium or (quasi-) periodic solution under consideration the linear part allows approximation by a normalized Hamiltonian system with a torus symmetry. It is assumed that reduction by this symmetry leads to a system with one degree of freedom. The volume focuses on two such reduction methods, the planar reduction (or polar coordinates) method and the reduction by the energy momentum mapping. The one-degree-of-freedom system then is tackled by singularity theory, where computer algebra, in particular, Gröbner basis techniques, are applied. The readership addressed consists of advanced graduate students and researchers in dynamical systems.

E-könyv értékelése

Mondd el a véleményedet.

Olvasási információk

Okostelefonok és táblagépek
Telepítsd a Google Play Könyvek alkalmazást Android- vagy iPad/iPhone eszközre. Az alkalmazás automatikusan szinkronizálódik a fiókoddal, így bárhol olvashatsz online és offline állapotban is.
Laptopok és számítógépek
A Google Playen vásárolt hangoskönyveidet a számítógép böngészőjében is meghallgathatod.
E-olvasók és más eszközök
E-tinta alapú eszközökön (például Kobo e-könyv-olvasón) való olvasáshoz le kell tölteni egy fájlt, és átvinni azt a készülékre. A Súgó részletes utasításait követve lehet átvinni a fájlokat a támogatott e-könyv-olvasókra.