Bayesianisches Netzwerk: Modellierung von Unsicherheit in Robotersystemen

· Robotikwissenschaft [German] 第 10 冊 · One Billion Knowledgeable
電子書
491
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

1: Bayessches Netz: Vertiefen Sie sich in die grundlegenden Konzepte von Bayesschen Netzen und deren Anwendungen.

2: Statistisches Modell: Erkunden Sie den Rahmen statistischer Modelle, der für die Dateninterpretation entscheidend ist.


3: Wahrscheinlichkeitsfunktion: Verstehen Sie die Bedeutung von Wahrscheinlichkeitsfunktionen im probabilistischen Denken.


4: Bayessche Inferenz: Erfahren Sie, wie die Bayessche Inferenz Entscheidungsprozesse mit Daten verbessert.


5: Mustererkennung: Untersuchen Sie Methoden zum Erkennen von Mustern in komplexen Datensätzen.


6: Ausreichende Statistik: Entdecken Sie, wie ausreichende Statistik die Datenanalyse vereinfacht und gleichzeitig Informationen erhält.


7: Gaußscher Prozess: Untersuchen Sie Gaußsche Prozesse und ihre Rolle bei der Modellierung von Unsicherheit.


8: Posterior-Wahrscheinlichkeit: Gewinnen Sie Einblicke in die Berechnung von Posterior-Wahrscheinlichkeiten für fundierte Vorhersagen.


9: Grafisches Modell: Verstehen Sie die Struktur und den Nutzen grafischer Modelle bei der Darstellung von Beziehungen.


10: Prior-Wahrscheinlichkeit: Untersuchen Sie die Bedeutung von Prior-Wahrscheinlichkeiten im Bayesschen Denken.


11: Gibbs-Sampling: Lernen Sie Gibbs-Sampling-Techniken für effizientes statistisches Sampling.


12: Maximum-a-posteriori-Schätzung: Entdecken Sie die MAP-Schätzung als Methode zur Optimierung bayesscher Modelle.


13: Bedingtes Zufallsfeld: Erkunden Sie die Verwendung bedingter Zufallsfelder bei strukturierter Vorhersage.


14: Dirichlet-multinomiale Verteilung: Verstehen Sie die Dirichlet-multinomiale Verteilung bei der Analyse kategorialer Daten.


15: Grafische Modelle für Proteinstrukturen: Untersuchen Sie Anwendungen grafischer Modelle in der Bioinformatik.


16: Modelle von Zufallsgraphen der Exponentialfamilie: Tauchen Sie ein in Zufallsgraphen der Exponentialfamilie für die Netzwerkanalyse.


17: Bernstein-von-Mises-Theorem: Lernen Sie die Implikationen des Bernstein-von-Mises-Theorems in der Statistik.


18: Bayessche hierarchische Modellierung: Erkunden Sie hierarchische Modelle zur Analyse komplexer Datenstrukturen.


19: Graphoid: Verstehen Sie das Konzept von Graphoiden und ihre Bedeutung in Abhängigkeitsbeziehungen.


20: Abhängigkeitsnetzwerk (grafisches Modell): Untersuchen Sie Abhängigkeitsnetzwerke in grafischen Modellrahmen.


21: Probabilistische Numerik: Untersuchen Sie probabilistische Numerik für verbesserte Rechenmethoden.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。

繼續瀏覽系列叢書

Fouad Sabry的其他著作

同類型電子書