Bayesianisches Netzwerk: Modellierung von Unsicherheit in Robotersystemen

· Robotikwissenschaft [German] Kitap 10 · One Billion Knowledgeable
E-kitap
491
Sayfa
Uygun
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

1: Bayessches Netz: Vertiefen Sie sich in die grundlegenden Konzepte von Bayesschen Netzen und deren Anwendungen.

2: Statistisches Modell: Erkunden Sie den Rahmen statistischer Modelle, der für die Dateninterpretation entscheidend ist.


3: Wahrscheinlichkeitsfunktion: Verstehen Sie die Bedeutung von Wahrscheinlichkeitsfunktionen im probabilistischen Denken.


4: Bayessche Inferenz: Erfahren Sie, wie die Bayessche Inferenz Entscheidungsprozesse mit Daten verbessert.


5: Mustererkennung: Untersuchen Sie Methoden zum Erkennen von Mustern in komplexen Datensätzen.


6: Ausreichende Statistik: Entdecken Sie, wie ausreichende Statistik die Datenanalyse vereinfacht und gleichzeitig Informationen erhält.


7: Gaußscher Prozess: Untersuchen Sie Gaußsche Prozesse und ihre Rolle bei der Modellierung von Unsicherheit.


8: Posterior-Wahrscheinlichkeit: Gewinnen Sie Einblicke in die Berechnung von Posterior-Wahrscheinlichkeiten für fundierte Vorhersagen.


9: Grafisches Modell: Verstehen Sie die Struktur und den Nutzen grafischer Modelle bei der Darstellung von Beziehungen.


10: Prior-Wahrscheinlichkeit: Untersuchen Sie die Bedeutung von Prior-Wahrscheinlichkeiten im Bayesschen Denken.


11: Gibbs-Sampling: Lernen Sie Gibbs-Sampling-Techniken für effizientes statistisches Sampling.


12: Maximum-a-posteriori-Schätzung: Entdecken Sie die MAP-Schätzung als Methode zur Optimierung bayesscher Modelle.


13: Bedingtes Zufallsfeld: Erkunden Sie die Verwendung bedingter Zufallsfelder bei strukturierter Vorhersage.


14: Dirichlet-multinomiale Verteilung: Verstehen Sie die Dirichlet-multinomiale Verteilung bei der Analyse kategorialer Daten.


15: Grafische Modelle für Proteinstrukturen: Untersuchen Sie Anwendungen grafischer Modelle in der Bioinformatik.


16: Modelle von Zufallsgraphen der Exponentialfamilie: Tauchen Sie ein in Zufallsgraphen der Exponentialfamilie für die Netzwerkanalyse.


17: Bernstein-von-Mises-Theorem: Lernen Sie die Implikationen des Bernstein-von-Mises-Theorems in der Statistik.


18: Bayessche hierarchische Modellierung: Erkunden Sie hierarchische Modelle zur Analyse komplexer Datenstrukturen.


19: Graphoid: Verstehen Sie das Konzept von Graphoiden und ihre Bedeutung in Abhängigkeitsbeziehungen.


20: Abhängigkeitsnetzwerk (grafisches Modell): Untersuchen Sie Abhängigkeitsnetzwerke in grafischen Modellrahmen.


21: Probabilistische Numerik: Untersuchen Sie probabilistische Numerik für verbesserte Rechenmethoden.

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.

Seriye devam et

Fouad Sabry adlı yazarın diğer kitapları

Benzer e-kitaplar