Bayesianisches Netzwerk: Modellierung von Unsicherheit in Robotersystemen

· Robotikwissenschaft [German] Книга 10 · One Billion Knowledgeable
Е-книга
491
Страници
Соодветна
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

1: Bayessches Netz: Vertiefen Sie sich in die grundlegenden Konzepte von Bayesschen Netzen und deren Anwendungen.

2: Statistisches Modell: Erkunden Sie den Rahmen statistischer Modelle, der für die Dateninterpretation entscheidend ist.


3: Wahrscheinlichkeitsfunktion: Verstehen Sie die Bedeutung von Wahrscheinlichkeitsfunktionen im probabilistischen Denken.


4: Bayessche Inferenz: Erfahren Sie, wie die Bayessche Inferenz Entscheidungsprozesse mit Daten verbessert.


5: Mustererkennung: Untersuchen Sie Methoden zum Erkennen von Mustern in komplexen Datensätzen.


6: Ausreichende Statistik: Entdecken Sie, wie ausreichende Statistik die Datenanalyse vereinfacht und gleichzeitig Informationen erhält.


7: Gaußscher Prozess: Untersuchen Sie Gaußsche Prozesse und ihre Rolle bei der Modellierung von Unsicherheit.


8: Posterior-Wahrscheinlichkeit: Gewinnen Sie Einblicke in die Berechnung von Posterior-Wahrscheinlichkeiten für fundierte Vorhersagen.


9: Grafisches Modell: Verstehen Sie die Struktur und den Nutzen grafischer Modelle bei der Darstellung von Beziehungen.


10: Prior-Wahrscheinlichkeit: Untersuchen Sie die Bedeutung von Prior-Wahrscheinlichkeiten im Bayesschen Denken.


11: Gibbs-Sampling: Lernen Sie Gibbs-Sampling-Techniken für effizientes statistisches Sampling.


12: Maximum-a-posteriori-Schätzung: Entdecken Sie die MAP-Schätzung als Methode zur Optimierung bayesscher Modelle.


13: Bedingtes Zufallsfeld: Erkunden Sie die Verwendung bedingter Zufallsfelder bei strukturierter Vorhersage.


14: Dirichlet-multinomiale Verteilung: Verstehen Sie die Dirichlet-multinomiale Verteilung bei der Analyse kategorialer Daten.


15: Grafische Modelle für Proteinstrukturen: Untersuchen Sie Anwendungen grafischer Modelle in der Bioinformatik.


16: Modelle von Zufallsgraphen der Exponentialfamilie: Tauchen Sie ein in Zufallsgraphen der Exponentialfamilie für die Netzwerkanalyse.


17: Bernstein-von-Mises-Theorem: Lernen Sie die Implikationen des Bernstein-von-Mises-Theorems in der Statistik.


18: Bayessche hierarchische Modellierung: Erkunden Sie hierarchische Modelle zur Analyse komplexer Datenstrukturen.


19: Graphoid: Verstehen Sie das Konzept von Graphoiden und ihre Bedeutung in Abhängigkeitsbeziehungen.


20: Abhängigkeitsnetzwerk (grafisches Modell): Untersuchen Sie Abhängigkeitsnetzwerke in grafischen Modellrahmen.


21: Probabilistische Numerik: Untersuchen Sie probabilistische Numerik für verbesserte Rechenmethoden.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.

Други од серијата

Повеќе од Fouad Sabry

Слични е-книги