Bayesian Inference: Fundamentals and Applications

ยท Artificial Intelligence เจ•เจฟเจคเจพเจฌ 94 ยท One Billion Knowledgeable
เจˆ-เจ•เจฟเจคเจพเจฌ
157
เจชเฉฐเจจเฉ‡
เจฏเฉ‹เจ—
เจฐเฉ‡เจŸเจฟเฉฐเจ—เจพเจ‚ เจ…เจคเฉ‡ เจธเจฎเฉ€เจ–เจฟเจ†เจตเจพเจ‚ เจฆเฉ€ เจชเฉเจธเจผเจŸเฉ€ เจจเจนเฉ€เจ‚ เจ•เฉ€เจคเฉ€ เจ—เจˆ เจนเฉˆ ย เจนเฉ‹เจฐ เจœเจพเจฃเฉ‹

เจ‡เจธ เจˆ-เจ•เจฟเจคเจพเจฌ เจฌเจพเจฐเฉ‡

What Is Bayesian Inference

Bayesian inference is a type of statistical inference that updates the probability of a hypothesis based on new data or information using Bayes' theorem. This way of statistical inference is known as the Bayesian method. In the field of statistics, and particularly in the field of mathematical statistics, the Bayesian inference method is an essential tool. When conducting a dynamic analysis of a data sequence, bayesian updating is an especially useful technique to utilize. Inference based on Bayes' theorem has been successfully implemented in a diverse range of fields, including those of science, engineering, philosophy, medicine, athletics, and the legal system. Bayesian inference is strongly related to subjective probability, which is why it is frequently referred to as "Bayesian probability" in the field of decision theory philosophy.


How You Will Benefit


(I) Insights, and validations about the following topics:


Chapter 1: Bayesian Inference


Chapter 2: Likelihood Function


Chapter 3: Conjugate Prior


Chapter 4: Posterior Probability


Chapter 5: Maximum a Posteriori Estimation


Chapter 6: Bayes Estimator


Chapter 7: Bayesian Linear Regression


Chapter 8: Dirichlet Distribution


Chapter 9: Variational Bayesian Methods


Chapter 10: Bayesian Hierarchical Modeling


(II) Answering the public top questions about bayesian inference.


(III) Real world examples for the usage of bayesian inference in many fields.


(IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of bayesian inference' technologies.


Who This Book Is For


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of bayesian inference.

เจ‡เจธ เจˆ-เจ•เจฟเจคเจพเจฌ เจจเฉ‚เฉฐ เจฐเฉ‡เจŸ เจ•เจฐเฉ‹

เจ†เจชเจฃเฉ‡ เจตเจฟเจšเจพเจฐ เจฆเฉฑเจธเฉ‹

เจชเฉœเฉเจนเจจ เจธเฉฐเจฌเฉฐเจงเฉ€ เจœเจพเจฃเจ•เจพเจฐเฉ€

เจธเจฎเจพเจฐเจŸเจซเจผเฉ‹เจจ เจ…เจคเฉ‡ เจŸเฉˆเจฌเจฒเฉˆเฉฑเจŸ
Google Play Books เจเจช เจจเฉ‚เฉฐ Android เจ…เจคเฉ‡ iPad/iPhone เจฒเจˆ เจธเจฅเจพเจชเจค เจ•เจฐเฉ‹เฅค เจ‡เจน เจคเฉเจนเจพเจกเฉ‡ เจ–เจพเจคเฉ‡ เจจเจพเจฒ เจธเจตเฉˆเจšเจฒเจฟเจค เจคเฉŒเจฐ 'เจคเฉ‡ เจธเจฟเฉฐเจ• เจ•เจฐเจฆเฉ€ เจนเฉˆ เจ…เจคเฉ‡ เจคเฉเจนเจพเจจเฉ‚เฉฐ เจ•เจฟเจคเฉ‹เจ‚ เจตเฉ€ เจ†เจจเจฒเจพเจˆเจจ เจœเจพเจ‚ เจ†เจซเจผเจฒเจพเจˆเจจ เจชเฉœเฉเจนเจจ เจฆเจฟเฉฐเจฆเฉ€ เจนเฉˆเฅค
เจฒเฉˆเจชเจŸเจพเจช เจ…เจคเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ
เจคเฉเจธเฉ€เจ‚ เจ†เจชเจฃเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ เจฆเจพ เจตเฉˆเฉฑเจฌ เจฌเฉเจฐเจพเจŠเจœเจผเจฐ เจตเจฐเจคเจฆเฉ‡ เจนเฉ‹เจ Google Play 'เจคเฉ‡ เจ–เจฐเฉ€เจฆเฉ€เจ†เจ‚ เจ—เจˆเจ†เจ‚ เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌเจพเจ‚ เจธเฉเจฃ เจธเจ•เจฆเฉ‡ เจนเฉ‹เฅค
eReaders เจ…เจคเฉ‡ เจนเฉ‹เจฐ เจกเฉ€เจตเจพเจˆเจธเจพเจ‚
e-ink เจกเฉ€เจตเจพเจˆเจธเจพเจ‚ 'เจคเฉ‡ เจชเฉœเฉเจนเจจ เจฒเจˆ เจœเจฟเจตเฉ‡เจ‚ Kobo eReaders, เจคเฉเจนเจพเจจเฉ‚เฉฐ เฉžเจพเจˆเจฒ เจกเจพเจŠเจจเจฒเฉ‹เจก เจ•เจฐเจจ เจ…เจคเฉ‡ เจ‡เจธเจจเฉ‚เฉฐ เจ†เจชเจฃเฉ‡ เจกเฉ€เจตเจพเจˆเจธ 'เจคเฉ‡ เจŸเฉเจฐเจพเจ‚เจธเจซเจฐ เจ•เจฐเจจ เจฆเฉ€ เจฒเฉ‹เฉœ เจนเฉ‹เจตเฉ‡เจ—เฉ€เฅค เจธเจฎเจฐเจฅเจฟเจค eReaders 'เจคเฉ‡ เฉžเจพเจˆเจฒเจพเจ‚ เจŸเฉเจฐเจพเจ‚เจธเจซเจฐ เจ•เจฐเจจ เจฒเจˆ เจตเฉ‡เจฐเจตเฉ‡ เจธเจนเจฟเจค เจฎเจฆเจฆ เจ•เฉ‡เจ‚เจฆเจฐ เจนเจฟเจฆเจพเจ‡เจคเจพเจ‚ เจฆเฉ€ เจชเจพเจฒเจฃเจพ เจ•เจฐเฉ‹เฅค

เจธเฉ€เจฐเฉ€เฉ› เจœเจพเจฐเฉ€ เจฐเฉฑเจ–เฉ‹

Fouad Sabry เจตเฉฑเจฒเฉ‹เจ‚ เจนเฉ‹เจฐ

เจฎเจฟเจฒเจฆเฉ€เจ†เจ‚-เจœเฉเจฒเจฆเฉ€เจ†เจ‚ เจˆ-เจ•เจฟเจคเจพเจฌเจพเจ‚