Bayesian Analysis with Python

· Packt Publishing Ltd
電子書
282
評分和評論未經驗證  瞭解詳情

關於本電子書

Unleash the power and flexibility of the Bayesian frameworkAbout This BookSimplify the Bayes process for solving complex statistical problems using Python;Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;Learn how and when to use Bayesian analysis in your applications with this guide.Who This Book Is For

Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.

What You Will LearnUnderstand the essentials Bayesian concepts from a practical point of viewLearn how to build probabilistic models using the Python library PyMC3Acquire the skills to sanity-check your models and modify them if necessaryAdd structure to your models and get the advantages of hierarchical modelsFind out how different models can be used to answer different data analysis questionsWhen in doubt, learn to choose between alternative models.Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.Learn how to think probabilistically and unleash the power and flexibility of the Bayesian frameworkIn Detail

The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.

Style and approach

Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。