Bayesian Analysis with Python

· Packt Publishing Ltd
eBook
282
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Unleash the power and flexibility of the Bayesian frameworkAbout This BookSimplify the Bayes process for solving complex statistical problems using Python;Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;Learn how and when to use Bayesian analysis in your applications with this guide.Who This Book Is For

Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.

What You Will LearnUnderstand the essentials Bayesian concepts from a practical point of viewLearn how to build probabilistic models using the Python library PyMC3Acquire the skills to sanity-check your models and modify them if necessaryAdd structure to your models and get the advantages of hierarchical modelsFind out how different models can be used to answer different data analysis questionsWhen in doubt, learn to choose between alternative models.Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.Learn how to think probabilistically and unleash the power and flexibility of the Bayesian frameworkIn Detail

The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.

Style and approach

Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.