Elasticity and Geometry: From hair curls to the non-linear response of shells

·
· OUP Oxford
Ebook
600
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

We experience elasticity everywhere in daily life: in the straightening or curling of hairs, the irreversible deformations of car bodies after a crash, or the bouncing of elastic balls in ping-pong or soccer. The theory of elasticity is essential to the recent developments of applied and fundamental science, such as the bio-mechanics of DNA filaments and other macro-molecules, and the animation of virtual characters in computer graphics and materials science. In this book, the emphasis is on the elasticity of thin bodies (plates, shells, rods) in connection with geometry. It covers such topics as the mechanics of hairs (curled and straight), the buckling instabilities of stressed plates, including folds and conical points appearing at larger stresses, the geometric rigidity of elastic shells, and the delamination of thin compressed films. It applies general methods of classical analysis, including advanced nonlinear aspects (bifurcation theory, boundary layer analysis), to derive detailed, fully explicit solutions to specific problems. These theoretical concepts are discussed in connection with experiments. Mathematical prerequisites are vector analysis and differential equations. The book can serve as a concrete introduction to nonlinear methods in analysis.

About the author

Basile Audoly, CNRS and Université Pierre et Marie Curie, Paris VI, France Yves Pomeau, CNRS, École Normale Supérieure, Paris, France, and University of Arizona, Tucson, USA

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.