Basic Number Theory: Edition 3

· Springer Science & Business Media
2.0
리뷰 1개
eBook
316
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

)tPI(}jlOV, e~oxov (10CPUljlr1.'CWV Aiux., llpop. . .dsup.. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by Chevalley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very well. It contained a brief but essentially com plete account of the main features of classfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I included such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather closely at some critical points.

평점 및 리뷰

2.0
리뷰 1개

저자 정보

Biography of André Weil

André Weil was born on May 6, 1906 in Paris. After studying mathematics at the École Normale Supérieure and receiving a doctoral degree from the University of Paris in 1928, he held professorial positions in India, France, the United States and Brazil before being appointed to the Institute for Advanced Study, Princeton in 1958, where he remained until he died on August 6, 1998.

André Weil's work laid the foundation for abstract algebraic geometry and the modern theory of abelian varieties. A great deal of his work was directed towards establishing the links between number theory and algebraic geometry and devising modern methods in analytic number theory. Weil was one of the founders, around 1934, of the group that published, under the collective name of N. Bourbaki, the highly influential multi-volume treatise Eléments de mathématique.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.